Structure and Photodissociation Spectra of Mixed Ethene-Acetone Clusters

Optimized geometries (OPLS potential) of mixed ethene-acetone dimer C2H4-CH3COCH3

Udo Buck, Martin Hobein and Burkhard Schmidt

Infrared photodissociation spectra of the mixed complexes C2H4-CH3COCH3 and C2H4-(CH3COCH3)2 have been observed after size selecting them by scattering from a helium beam combined with mass spectrometric detection. The excitation of the v7-out of plane symmetric wagging mode of ethene near its gas phase frequency at 949.3 cm-1 with a cw-CO2 laser leads to a characteristic depletion of the cluster beam. The dissociation spectrum of the 1:1 complex can be explained by two peaks at 950.8 and 961.6 cm-1. Calculations of minimum energy configurations and band shifts based on an empirical site-site potential show that these frequencies can be attributed to the absorption of two different isomers. They correspond to the two different binding patterns of the H atoms of ethene to the O atom of acetone and those of acetone to the C-C group of ethene, respectively. For the 1:2 complex, a large peak at 958.5 cm-1 and a smaller onearound 940.5 cm-1 are found which can be explained in a similar manner by several isomers found in the structure calculations.

J. Chem. Phys. 98 (12), 9425-9431 (1993)